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We report analytical and numerical results describing the dynamics of the two-
dimensional coherent structure of bubbles and spikes in the Richtmyer–Meshkov
instability for fluids with a finite density ratio. The theory accounts for the non-
local properties of the interface evolution, and the simulations treat the interface
as a discontinuity. Good agreement between the analytical and numerical results
is achieved. To quantify accurately the interface dynamics in the simulations, new
diagnostics and scalings are suggested. The velocity at which the interface would
move if it were ideally planar is used to set the flow time scale as well as the reference
point for the bubble (spike) position. The data sampling has high temporal resolution
and captures the velocity oscillations caused by sound waves. The bubble velocity and
curvature are both monitored, and the bubble curvature is shown to be the relevant
diagnostic parameter. According to the results obtained, in the nonlinear regime of the
Richtmyer–Meshkov instability the bubbles flatten and decelerate, and the flattening
of the bubble front indicates the multiscale character of the coherent dynamics.

1. Introduction
When a shock wave passes an interface between two fluids with different acoustic

impedances, the misalignment of the pressure and density gradients results in a growth
of the interface perturbations. This phenomenon is called the Richtmyer–Meshkov
instability (RMI) (Richtmyer 1960; Meshkov 1969). RMI is often considered as
the Rayleigh–Taylor instability (RTI) with an ‘impulsive’ acceleration (Kull 1991).
The Richtmyer–Meshkov (RM) instability produces turbulent mixing of the fluids,
which plays an important role in many physical and technological processes. Several
representative examples are inertial confinement fusion, core-collapse supernova,
impact dynamics of liquids, and supersonic combustion (Kull 1991; Glendinning
et al. 2003; Robey et al. 2003; Miles et al. 2004). Reliable description of the turbulent
mixing is a long-standing problem in fluid dynamics. One of the fundamental issues
to be understood is the evolution of the large-scale coherent structure characterizing
the RM mixing zone (Abarzhi 2001, 2002; Abarzhi, Nishihara & Glimm 2003). Our
work reports the multiscale character of the coherent dynamics and suggests the
diagnostics and scaling for its reliable quantification.

† Author to whom correspondence should be addressed: snezha@stanford.edu
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According to observations, RMI develops when a shock wave refracts through a
perturbed interface, whether it propagates from the light fluid to the heavy fluid or in
the opposite direction (Meshkov 1969; Holmes et al. 1999). In the linear regime of the
instability, the light fluid ‘impulsively’ accelerates the heavy fluid, and the amplitude
of the perturbation grows at a constant rate (Richtmyer 1960; Meshkov 1969). If the
shock propagates from the heavy to the light fluid, the phase of the perturbation also
reverses (Holmes et al. 1999). The value of the initial growth rate is determined by the
shock-interface interaction and by the baroclinic production of vorticity (Velikovich
1996; Wouchuk 2001a). In the nonlinear regime, the growth rate decreases, and the
coherent structure of bubbles and spikes appears (Aleshin, Ganalii & Zaitsev 1988;
Aleshin, Lazareva & Zaitsev 1990). The light (heavy) fluid penetrates the heavy
(light) fluid in bubbles (spikes) and the spatial period of the structure is set either
by the initial conditions or by the mode of fastest growth (Collins & Jacobs 2002;
Chebotareva et al. 1999). Shear-driven instabilities create small-scale structures on
the side of the evolving spikes (Matsuoka, Nishihara & Fukuda 2003; Zabusky et al.
2003; Jacobs & Krivets 2005). If the flow is two-dimensional and the amplitude of
the initial perturbation is large, then the spatial period of the large-scale coherent
structure may increase (Alon et al. 1995; Oron et al. 2001). Eventually, a mixing
zone develops. In the turbulent mixing regime, the bubbles and spikes decelerate,
and their positions are described by power law time-dependence with the exponents
dependent on the density ratio (Schneider, Dimonte & Remington 1998; Dimonte
2000; Glendinning et al. 2003; Robey et al. 2003; Miles et al. 2004).

The evolution of the Richtmyer–Meshkov instability is far from completely
understood. The dynamics of RMI is governed by the nonlinear Euler or compressible
Navier–Stokes equations with the initial and boundary conditions at the fluid interface.
The compressibility, the baroclinic production of vorticity, the nonlinearities, and the
secondary instabilities make the interface dynamics essentially non-local and result
in the development of singularities in the governing equations. The non-locality
and singularities cause significant difficulties for theoretical and numerical studies of
the Richtmyer–Meshkov instability (for more details see Velikovich 1996; Wouchuk
2001a; Wouchuk 2001b; Abarzhi 2001; Abarzhi 2002; Matsuoka et al. 2003; Abarzhi
et al. 2003 and references therein).

Having started from the classical work of Richtmyer (1960), several impulsive
models were suggested to describe the linear regime of RMI (Meyer & Blewett 1972;
Vandenboomgaerde, Muegler & Gauthier 1998). These models could not accurately
account for the influence of vorticity deposited by the initial shock (Velikovich
1996; Zabusky et al. 2003) and did not explain the observations completely. An
adequate analytical description of the linear regime of RMI was found recently by
Wouchuk (2001a, b). This theory considered the interactions between the interface
and the transmitted and reflected wave fronts, accounted for the baroclinic vorticity
production, and derived with high accuracy the growth rate of RMI in the cases
of strong and weak shocks as well as for fluids with similar and highly contrasting
densities. The necessity of considering the higher-order interactions for obtaining
an adequate description of the linear regime of RMI (discussed, for instance, in
Velikovich 1996 and Wouchuk 2001a, b) is one of the indications of the non-local
character of the instability evolution.

The nonlinear dynamics of RMI is a long-standing problem (Kull 1991; Zabusky
et al. 2003). This transitional stage of the instability is important to study because it
bridges a gap between the linear regime, with the perturbation growth rate determined
by the initial conditions, and the turbulent mixing regime, whose evolution is perhaps
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independent of the initial conditions (Glendinning et al. 2003; Robey et al. 2003; Miles
et al. 2004). In addition, most of existing experiments and simulations in RMI do not
pass completely into the turbulent regime (Robey et al. 2003; Jacobs & Krivets 2005).
To identify benchmarks for observations and to set reliable grounds for modelling
of the RM mixing process, a trustworthy description of the nonlinear dynamics is
required. A test case, for which the nonlinear dynamics can be described analytically
and validated with experiments and simulations, corresponds to RMI developing from
a small-amplitude initial perturbation, a so-called single-mode perturbation (Aleshin
et al. 1988, 1990; Jacobs & Sheeley 1996; Collins & Jacobs 2002; Jacobs & Krivets
2005).

The evolution of RMI is characterized by two, in general, independent, length scales:
the position of the bubble (spike) and the spatial period of the coherent structure,
i.e the amplitude and the wavelength of the front. For a long time the nonlinear
dynamics of RMI (RTI) was considered as a single-scale problem, characterized
entirely by the spatial period of the structure of bubbles and spikes (Sharp 1984).
This idea was employed by Alon et al. (1995) and Oron et al. (2001) in a heuristic
model balancing with adjustable parameters the flow inertia and drag. The free
parameters of the model have been calibrated via a comparison with some of the
observations; however, the models could not explain the results of all observations
and were subjects of controversy (Schneider et al. 1998; Dimonte 2000; Robey et al.
2003; Miles et al. 2004). The assumptions of Alon et al. (1995) and Oron et al.
(2001) agreed with a so-called single-mode solution obtained by Goncharov (2002).
The single-mode solution presumed a local character of the interface evolution, and
reported that the curvature of the bubble front is a finite constant value, independent
of the density ratio and proportional to the inverse spatial period (Goncharov 2002).
The non-local properties of the nonlinear dynamics of RMI were accounted for by the
analysis based on group theory (Abarzhi 2001; Abarzhi et al. 2003), which has found
that the curvature of the bubble front in RMI should approach zero asymptotically.
This result indicates that two length scales, the wavelength and the amplitude of the
front, contribute independently to the nonlinear dynamics, and the evolution of RMI
has a multiscale character.

Is the nonlinear coherent dynamics in RMI a local process characterized entirely
by a single length scale, as presumed by the single-scale models (Sharp 1984; Alon
et al. 1995; Oron et al. 2001; Goncharov 2002)? Or is it a non-local and multiscale
phenomenon, as follows from the group theory approach (Abarzhi 2001; Abarzhi
et al. 2003)? Addressing this issue is crucial for understanding the nonlinear RMI
and for a development of a sound phenomenological model of the turbulent mixing
process.

Here we perform an accurate and systematic study of the nonlinear RMI with
improved diagnostics. We obtain analytical and numerical results describing the
nonlinear evolution of the two-dimensional coherent structure in RMI for fluids with
a finite density ratio. Our theory applies the theoretical method of Abarzhi (2001)
and Abarzhi et al. (2003) for the two-dimensional case and extends it to higher
orders of approximation. Our simulations solve the Navier–Stokes equations using
a fully compressible second-order hybrid tracking/capturing scheme. The numerical
method treats the interface as a discontinuity, and is applicable for fluids with highly
contrasting as well as similar densities. New diagnostics and scaling are used to
quantify the interface dynamics accurately, and both the velocity and curvature of the
bubble front are monitored. Our simulations have high temporal resolution and run
for a time significantly longer than in other observations. Good agreement between
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the theory and the simulations is achieved. According to our results, the shape of
the bubble front is not determined uniquely by the spatial period of the coherent
structure, and the nonlinear RM bubbles flatten and decelerate. The flattening and
deceleration of the bubble front are inter-related processes, and they indicate the
essentially non-local and multiscale character of RMI evolution. We show that, due
to the compressible nature of RMI and a relatively short dynamic range of the
observation time, it may be extremely challenging for experiments and simulations to
verify the power law time-dependence of the velocity of the nonlinear RM bubble.

2. Theory
In the nonlinear regime of RMI, the interface evolves without external forces, the

bubble and spike growth rates decrease with time, and the fluid motion is nearly
incompressible. Let t be time, let (x, z) be the Cartesian coordinates, let z∗(x, t) be
the function describing the fluid interface locally, and let ρh(l), vh(l) and ph(l) be the
density, velocity and pressure of the heavy (light) fluid located in the region z > z∗

(z < z∗). The subscript h(l) marks the flow quantities of the heavy (light) fluid. The
dynamics of incompressible immiscible fluids are governed by the following set of
equations. In the bulk of the heavy (light) fluid,

∇ · vh(l) = 0 , ρh(l)

(
∂vh(l)

∂t
+ vh(l) · ∇vh(l)

)
+ ∇ph(l) = 0. (2.1)

The flow has no mass sources,

vh|z=+∞ = vl |z=−∞ = 0, (2.2)

and the normal component of velocity vn,h(l) and pressure are continuous at the
moving interface z∗(x, t),

vn,h|z=z∗ = vn,l |z=z∗, ph|z=z∗ = pl |z=z∗ . (2.3a, b)

The length scale and time scale in the system (2.1), (2.2), (2.3) are defined by the
initial conditions. The length scale λ is the period of the initial perturbation at the
fluid interface in the x direction. The time scale is (λ/v0), where v0 is the initial growth
rate. We assume that the x direction is normal to the initial shock, and the value of
v0 is set by the shock-interface interaction in the linear regime of compressible RMI
(Wouchuk 2001a). The incompressible inviscid problem (2.1), (2.2), (2.3) is ill-posed,
and elementary methods for solving the problem are precluded owing to the singular
aspects of the interface dynamics.

The nonlinear RM flow is characterized by the large-scale structure, small-scale
structures, and energy transport between the large and small scales (Chebotareva et al.
1999; Collins & Jacobs 2002; Jacobs & Krivets 2005; Zabusky et al. 2003). The large-
scale structure is coherent and this is an array of bubble and spikes, characterized
by the period λ and the position h of the bubble or spike. The small-scale vortical
structures are driven by shear, and their dynamics is in general non-deterministic
(Frisch 1995), and is not defined uniquely by the initial conditions. According to
observations (Chebotareva et al. 1999; Collins & Jacobs 2002; Jacobs & Krivets
2005), for fluids with contrasting densities the scales can be separated, and the large-
scale coherent motion can be regarded as irrotational, with ∇ × vh(l) = 0. The idea
of separation in the RT/RM unstable flows of the large-scale structure, which is
‘passively advected’, from the active small-scale structures, was suggested first by
Aref & Tryggvason (1989) and then developed by Abarzhi (2001) and Abarzhi et al.
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(2003). The scale separation is applicable as long as the period of the coherent
structure is invariable and the energy transport between the scales is not extensive.

The large-scale coherent dynamics adequately represents the nonlinear evolution of
the bubble front in a vicinity of its tip, where the flow is potential. To describe this
evolution, we reduce the governing equations (2.1), (2.2), (2.3) to a local dynamical
system (Abarzhi 2001; Abarzhi et al. 2003). All calculations are performed in a non-
inertial frame of reference moving with the velocity v(t) in the z direction, where v(t)
is the bubble velocity and v = dh/dt . In the moving frame of references, the bubble
tip is the point of stagnation, and the fluids experience effective acceleration −∂v/∂t .
With vh(l) = ∇Φh(l), we expand the potential(s) Φh(l) as a Fourier series,

Φh =

∞∑
m=1

Φm(t)(cos(mkx) exp(−mkz)/mk + z), (2.4a)

Φl =

∞∑
m=1

Φ̃m(t)(cos(mkx) exp(mkz)/mk − z), (2.4b)

where k = 2π/λ is the wave vector (wavenumber). The symmetry x → − x imposed
in the expansions (2.4) is required for global stability of the coherent structure under
modulations with very large scales � λ (Abarzhi 2001; Abarzhi et al. 2003). For
(x/λ) ∼ 0 the bubble front has the form z∗(x, t) =

∑N

i = 0 ζi(t)x
2N , where N is the order

of approximation, ζ0(t) = 0, and ζ1(t) < 0 is the principal curvature at the bubble tip.
Substituting these expressions into the governing equations, taking the first integral of
(2.1), and re-expanding the boundary conditions (2.2), (2.3) for (x/λ) ∼ 0, we derive
a system of ordinary differential equations for surface variables ζi(t) and moments
Mn(t) =

∑∞
m=1 Φm(t)(km)n and M̃n(t) =

∑∞
m=1 Φ̃m(t)(km)n, where n and m are integers.

In the zeroth order of approximation, N = 0, the bubble front has the form
z∗(x, t) = 0, and the ‘no mass source’ condition (2.2) is reduced to

M0 = −M̃0 = −v, (2.5)

whereas the equations (2.3a, b) have a trivial form, 0 = 0. In the first order of
approximation, N = 1, the bubble front has the form z∗(x, t) = ζ1(t)x

2, and the
equations (2.3a, b) are reduced to

ζ̇1 = 3ζ1M1 + M2/2 = 3ζ1M̃1 − M̃2/2, (2.6a)(
Ṁ1

/
2 + ζ1Ṁ0 − M2

1

/
2 − ζ1

)
ρh =

( ˙̃M1/2 − ζ1
˙̃M0 − M̃2

1

/
2 − ζ1

)
ρl. (2.6b)

In the second order of approximation, N = 2, the interface is z∗(x, t) = ζ1(t)x
2 +ζ2(t)x

4,
and the expansions (2.5), (2.6) of the conditions (2.3a, b) are further augmented with
the equations

ζ̇2 = 5ζ2M1 − 5M2ζ
2
1

/
2 − 5M3ζ1/3! − M4/4!

= 5ζ2M̃1 + 5M̃2ζ
2
1 /2 − 5M̃3ζ1/3! + M̃4/4!, (2.7a)

ρh

(
Ṁ3/4! + ζ1Ṁ2/2 + ζ̇1M2/2 + ζ̇1ζ1M1 + ζ 2

1 Ṁ1/2 − ζ2Ṁ0

+ ζ 2
1 M2

1

/
2 − ζ1M1M2/2 − M1M3/3! + M2

2

/
8
)

= ρl

( ˙̃M3/4! − ζ1
˙̃M2/2 − ζ̇1M̃2/2 + ζ̇1ζ1M̃1 + ζ 2

1
˙̃M1/2 + ζ2

˙̃M0

+ ζ 2
1 M̃2

1

/
2 + ζ1M̃1M̃2/2 − M̃1M̃3/3! + M̃2

2

/
8
)
. (2.7b)

For N > 2 the dynamical system is very cumbersome, and is not considered here.
We emphasize that the ‘no mass source’ condition (2.2) is reduced to the equation
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(2.5) in zeroth order of approximation, N = 0, and has no other expansion terms in
higher orders, N � 1. We would like to point the attention of the reader to important
symmetry property of equations (2.5)–(2.7), following from conditions (2.1)–(2.3)
and expansion (2.4). Equations (2.5)–(2.7) remain invariant under transformation
ρh → ρl if odd moments and their time-derivatives change as M2n+1 → M̃2n+1 and

Ṁ2n+1 → ˙̃M2n+1, and even moments and their time-derivatives change as M2n → −M̃2n

and Ṁ2n → − ˙̃M2n.
The system (2.5), (2.6), (2.7) describes the dynamics of the bubble front as long

as the period of the coherent structure is invariable. The presentation in terms of
moments allows one to account for the effect of higher-order spatial correlations. The
dynamical system (2.5), (2.6), (2.7) cannot be integrated explicitly in time because
of the closure problem. However, one can find the solution for the system in some
limiting cases.

Initially, t(v0/λ) � 1, the perturbation amplitude is small, the dynamics of the
bubble front is described by the equations (2.5), (2.6) and only first-order harmonics
are accounted for, that is, N � 1, m = 1 and M2 = kM1 = k2M0 with M̃2 = kM̃1 = k2M̃0.
For t(v0/λ) � 1, the bubble velocity and curvature in (2.5), (2.6) change linearly with
time, as ζ1 ∼ −tv0/λ

2 and v − v0 ∼ −tv2
0/λ. In the nonlinear regime, the perturbation

amplitude is not small, N > 1, and the contribution of higher-order harmonics cannot
be neglected. Asymptotically, for t(v0/λ) � 1, the equations (2.5), (2.6), (2.7) have
regular solutions, which can be represented as infinite time series. To the leading
order in time, the velocity v and moments Mn, M̃n approach zero with time as 1/t ,
whereas the surface variables ζi are time-independent.

To describe the nonlinear dynamics of the bubble front in a single-mode
approximation, one considers the equations (2.5), (2.6) for N � 1, and retains only
first-order harmonics in the expressions for the moments, i.e. N � 1 and m = 1, with
M2 = kM1 = k2M0 and M̃2 = kM̃1 = k2M̃0. Then, the equations (2.5) and (2.6a, b) are
reduced, respectively, to

M0 = −M̃0 = −v, (2.8a)

ζ̇1 = kM0(3ζ1 + k/2) = kM̃0(3ζ1 − k/2), (2.8b)(
kṀ0

/
2 + ζ1Ṁ0 − k2M2

0

/
2 − ζ1

)
ρh = ρl

(
k ˙̃M0

/
2 − ζ1

˙̃M0 − k2M̃2
0

/
2 − ζ1

)
. (2.8c)

As is obvious from system (2.8), and as was pointed out first by Abarzhi (2001), in
the nonlinear regime, the single-mode approximation does not satisfy simultaneously
the two boundary conditions: the ‘no mass sources’ condition, (2.2), (2.5), (2.8a),
and the condition of continuity of the normal component of velocity at the interface,
(2.3a), (2.6a), (2.8b). To avoid this difficulty, Goncharov (2002) introduced an
inhomogeneous time-dependent mass flow of the light fluid at the infinity, violated
the boundary condition (2.2), (2.5), (2.8a), and found a single-mode solution with
the curvature ζ1 = ζD = −k/6 and velocity v = vD = (1 + A/3)/(1 + A)kt , and with A

being the Atwood number A = (ρh − ρl)/(ρh + ρl). Here the subscript D emphasizes
that the solution (vD, ζD) agrees with the assumptions of the drag model of Oron
et al. (2001). However, the drag model solution does not satisfy in the zeroth order
of approximation the conservation of mass (2.2).

To obtain a regular asymptotic solution describing the nonlinear dynamics of the
bubble front, we have to account for the higher-order correlations and the non-
local properties of the flow that has singularities. The singularities determine the
interplay of harmonics in the global flow as well as in the local dynamical system.
They therefore influence the shape and velocity of the regular bubble. We account
for this influence on the basis of symmetry arguments, that is, we consider all local
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N = 2, m = 3 |Φ2,A/Φ1,A| |Φ3,A/Φ1,A| |Φ̃2,A/Φ̃1,A| |Φ̃3,A/Φ̃1,A| vA,N = 2/vA,N=1

A ≈ 1 e−0.77 e−2.34 e−1.14 e−3.47 1 + e−1.77

A ≈ 0 e−0.91 e−2.71 e−0.91 e−2.71 1 + e−2.21

Table 1. The fastest solution in the family of regular asymptotic solutions.

asymptotic solutions allowed by the symmetry of the global flow. As in Abarzhi
(2001) and Abarzhi et al. (2003), we assume that the bubble shape is free and is
parametrized by the principal curvature at the bubble tip. In this way, we establish
proper relations between the moments, solve the closure problem in (2.6), (2.7) and
find a continuous one-parameter family of regular asymptotic solutions. Then we
perform the stability analysis and choose the fastest stable solution in the family as
the physically significant one.

To leading order in time, ζ̇1 = 0 and, according to (2.6a), the bubble curvature is
ζ1 = − M2/6M1 = M̃2/6M̃1. In the first approximation, we retain first- and second-
order harmonics in the expressions for the moments, i.e. N = 1 and m = 2, and obtain
M0 = Φ1 + Φ2 = (3M1/2k)(1 − M2/3M1k) and M̃0 = Φ̃1 + Φ̃2 = (3M̃1/2k)(1 − M̃2/3M̃1k)
with v = − M0 = M̃0. Then the bubble velocity is v = − (3M1/2k)(1 + 2ζ1/k), and
the ratio M1/M̃1 = − (1 − 2ζ1/k)/(1 + 2ζ1/k). In this way, we derive from equations
(2.5), (2.6) the bubble velocity as a function of the bubble curvature and the Atwood
number:

v =
3

2kt

(1 + A(ζ1/k) − 12A(ζ1/k)3)

(A − 4(ζ1/k) + 4A(ζ1/k)2)
(1 − 4(ζ1/k)2). (2.9)

The bubble is concave down, ζ1 < 0, and for solutions in the family (2.9) the velocity
v is a regular function on ζ1. In the interval ζcr <ζ1 � 0 the interplay of harmonics is
well captured and the lowest-order harmonics are dominant:

Φ1 =
2

kt

(1 − 2(ζ1/k))(1 + 3(ζ1/k))

(A − 4(ζ1/k) + 4A(ζ1/k)2)
(−1 − A(ζ1/k) + 12A(ζ1/k)3),

Φ̃1 =
2

kt

(1 + 2(ζ1/k))(−1 + 3(ζ1/k))

(A − 4(ζ1/k) + 4A(ζ1/k)2)
(−1 − A(ζ1/k) + 12A(ζ1/k)3),

Φ2 = −v − Φ1, Φ̃2 = v − Φ̃1.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.10)

As is seen from (2.10) for ζ1 ≈ ζcr the convergence is broken, as the magnitudes
of higher-order amplitudes become compatible with the magnitudes of the lower-
order amplitudes, as in Abarzhi (2002) in the case of A = 1. For A ∼ 1 the value
of ζcr ≈ − k/4, and for A ∼ 0 it is ζcr ≈ 0. The fastest solution in the family (2.9),
(2.10) is the solution with the curvature ζ1 = ζA = 0 and velocity v = vA = 3/2Akt . As
t(v0/λ) → ∞ the velocity vA → 0. Here the subscript A emphasizes that the solution
(vA, ζA) is obtained for the Atwood number A � 1.

In second-order approximation in space, N = 2, we retain the first-, second-, and
third-order harmonics in the expressions for the moments, Mn(t) =

∑3
m=1 Φm(t)(km)n

and M̃n(t) =
∑3

m=1 Φ̃m(t)(km)n, and obtain the one-parameter family of regular
asymptotic solutions similarly to (2.9), (2.10). The family is cumbersome and is
not presented here. For the fastest solution with ζ1 = ζA = 0, and the values of the
amplitudes and velocity are given in table 1. In higher approximation, N > 2, for
solutions in the family, the Fourier amplitudes decay with increase in their number,
and the higher-order corrections are small.
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To analyse stability of the solutions thus obtained, we derive the higher-order
corrections in the asymptotic time series expansion. For every N , we slightly perturb
ζi → ζi + θi , Mn → Mn + μn, M̃n → M̃n + μ̃n, linearize the equations (2.5), (2.6), (2.7) in
terms of small θi , μn and μ̃n, and derive the values of θi ∼ t−bi and μn, μ̃n ∼ t−1−bi .
The exponents bi are the complex functions dependent on the Atwood number and
the bubble curvature, bi = bi(A, ζ1). For stable solutions, the real part of the exponents
should be positive Re(bi) > 0. This criterion yields that in the one-parameter family
(2.9) the solutions with ζ1 ∼ 0 are stable, whereas solutions with finite curvatures
ζ1 ∼ ζcr are unstable. Therefore, the physically significant solution in the RM family
corresponds to a decelerating bubble flattened at the tip:

tv0/λ → ∞, ζ1 → ζA, v → vA, ζA = 0, vA = 0, (2.11)

with vA = C/Akt and C ∼ 2, so that vA ∼ λ/Aπt .
At first glance, the fact that the flattened bubble in the family (2.9) moves faster

than the bubble with a finite curvature seems to contradict the everyday experience.
This controversy is, however, apparent. Indeed, as the bubble velocity decays
with time as v ∼ F/kt , the magnitude of the bubble deceleration |dv/dt | is ∼ F/t2.
Thus, the larger the value of F , the faster the bubble moves, and the stronger are
its deceleration and drag. The bubble with a flattened surface experiences more drag
and has a larger deceleration magnitude than that with a finite curvature. This, in
turn, implies that the coefficient F in the velocity v ∼ F/kt has to be larger for a
flattened bubble compared the case of a bubble with a finite curvature, in agreement
with our results (2.9).

As vAt/λ∼ 1/A, then for fluids with close densities, 0 <A � 1, the bubbles move
faster and decelerate more strongly compared the case of fluids with highly contrasting
densities with A ≈ 1. For finite t , the velocity vAt/λ→ ∞ as A → 0. This indicates that
for fluids with similar densities the velocity of the nonlinear RM bubble may have a
time-dependence faster than 1/t , such as ta with −1 <a < 0, and the exponent in this
power law decay may depend on the Atwood number. It is worth mentioning that the
time-dependence of the previous non-local solution is derived under the assumption
that, in the RM flow, one can separate the small-scale vortical structures from the
passively advecting large-scale structure. For fluids with close densities, A ∼ 0, the size
of the vortical structures which appear on the sides of the evolving spikes, is large
and is comparable with the period of the coherent structure. Therefore, for A ∼ 0, the
scale separation may not work and the potential theory may be inapplicable.

The above analysis suggests the following evolution of the bubble front in the
Richtmyer–Meshkov instability. The shock-interface interaction results in a growth
of the small perturbation at the fluid interface (Richtmyer 1960). As the coherent
structure appears, the bubble velocity decreases, its shape becomes more curved,
and these changes are linear with time. In the weakly nonlinear regime, the bubble
curvature reaches an extreme value, dependent on the initial conditions and the
Atwood number. Asymptotically, the bubble flattens, ζ → 0, and decelerates, v → 0.
The flattening of the bubble front is a distinct feature of RMI and it follows from
the fact that the velocity of RM bubbles decays as a power law with time. For fluids
with similar densities, 0 <A � 1, the nonlinear bubbles move faster compared to the
case of A ≈ 1.

According to our theory, in the highly nonlinear regime of RMI the velocity of the
bubble front is represented by the infinite time series v ∼ C/Akt(1+

∑∞
j=1 Bj (tkv0)

−bj +
c.c.), where the integer j denotes the order of correction and c.c. denotes the complex
conjugate. The values of bj are derived via the stability analysis, and the coefficients
Bj are free parameters, dependent on the initial conditions. As found earlier,
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N = 1, ζ = 0 A = 0.9 A = 0.78 A = 0.663 A = 0.55

b1 −2.11 − 0.86i −2.28 − 1.07i −2.51 − 1.33i −2.82 − 1.68i

Table 2. The exponents of the next-order term in the velocity time-series.

A = 0.55

A = 0.78

0

0.05

0.10

0.15

0.20

10 11 12 13 14 15

|v|
v0

A = 0.66

0

0.05

0.10

0.15

0.20

10 11 12 13 14 15

0

0.05

0.10

0.15

0.20

10 11 12

kv0t kv0t

13 14 15

|v|
v0

A = 0.9

0

0.05

0.10

0.15

0.20

10 11 12 13 14 15

Figure 1. Velocity of the nonlinear RM bubble given by the non-local theory accounting for
the next-order correction in time (solid) and the single-scale drag model (dashed).

0 < Re(b1) < Re(b2) < · · · < Re(bi), so the solution (2.11) remains stable. However,
the stability of the solution (2.11) is asymptotic but not exponential (Korn & Korn
1968). The higher-order corrections are power laws, which decay slowly and do
not have characteristic time scale of the decay. This implies that, asymptotically, as
tkv0 → ∞, the bubble velocity approaches v → FA/kt , where FA = C/A, but for a finite
time tkv0 � 1, the contribution of terms ∼ |FABjv0(tkv0)

−1−bj | may be comparable
to that of the term FA/kt . For a finite sequence of data points and a short dynamic
range in observation time in the experimental and simulation data sets, a reliable
quantification of the exponent −1 and the coefficient FA of the asymptotic velocity
vA can be very difficult.

This challenge is illustrated by figure 1, showing the bubble velocity given
by the drag model vD = (1 + A/3)/(1 + A)kt and by our solution, v = 3/2Akt +
v0B1(tv0k)−b1 + c.c., which describes the asymptotic dynamics of a flattened bubble
in first approximation, N = 1, and accounts for the next-order correction in time.
The exponent b1 is given by the stability analysis (see table 2), and the coefficient
B1 is chosen to provide the best fit to the drag model solution in the time interval
10 < tv0k < 15. This time interval ensures the nonlinearity of the dynamics and it is
wider compared to the time intervals used for a quantification of the nonlinear
dynamics in the experiments and simulations (Youngs 1994; Collins & Jacobs
2002; Robey et al. 2003; Glendinning et al. 2003; Miles et al. 2004; Jacobs &
Krivets 2005). Four different values of the Atwood number are considered with
0 � A< 1. An excellent, within ∼10 %, ‘fit’ of the two solutions in figure 1 illustrates
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that, based solely on the velocity data, one can hardly distinguish between the
results of the single-scale drag model, which violates the conservation laws, and
our non-local theory, which accounts for the higher-order corrections in space
and time and identifies the essentially multiscale character of the interface dynamics.

3. Simulations
To simulate the evolution of the two-dimensional Richtmyer–Meshkov instability,

we solve the compressible Navier–Stokes equations,

∂ρ

∂t
+ ∇ · (ρv) = 0, (3.1a)

∂ρv

∂t
+ ∇ · (ρvv) + ∇p + ∇ · τ = 0, (3.1b)

∂ρE

∂t
+ ∇ · ([ρE + p] v) + ∇ · q + τ : ∇v = 0, (3.1c)

where ρ and v are the fluid density and velocity respectively, p is the pressure, q is
the heat flux

q = −Λ∇T , (3.2)

where T is the temperature and Λ is the thermal conductivity. The stress tensor τ is

τ = −μ[(∇v) + (∇v)T ] +
2

3
μ(∇ · v)I, (3.3)

where μ is the dynamic viscosity and I is the unity tensor. The total energy E is

E =
p/ρ

γ − 1
+

1

2
v2 , (3.4)

and for both fluids the ratio of the specific heats is γ = 1.4. The dynamic viscosity is
calculated using the Sutherland formula,

μ = μref (T/Tref )3/2 Tref + S1

T + S1

, (3.5)

with μref being the reference viscosity and S1 = 110 K. The thermal conductivity Λ is
determined using a Prandtl number of Pr = 0.76. The fluids are ideal gases with the
equation of state

p = ρΦT, (3.6)

where Φ is the gas constant of either the light or heavy fluid. In our simulations, the
flow has no mass sources and there is neither mass flux across nor slip at the moving
interface. Therefore, the normal and tangential components of velocity, as well as the
pressure and temperature, are continuous at the fluid interface. The density jump at
the interface is caused by the change in the gas constant Φ .

The fluid interface Γ is located at z∗(x, t) and is tracked by a level set scalar G.
With x = (x, z), we define

G(x, t)|Γ = G0 = const., (3.7)

where G(x, t) <G0 in the light fluid and G(x, t) >G0 in the heavy fluid. Then the
evolution equation for the scalar G can be derived by differentiation of equation (3.7)
in time,

∂G

∂t
+ v · ∇G = 0. (3.8)
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This equation is called the level set equation (Osher & Sethian 1988). It is independent
of the choice of G away from the interface. However, to facilitate the numerical
solution of (3.8), G is chosen as a distance function away from the interface,

|∇G||G 
=G0
= 1. (3.9)

3.1. Numerical method

In our numerical simulations, the Navier–Stokes equations (3.1) are solved using a
second-order space and time accurate hybrid capturing/tracking scheme, originally
proposed by Smiljanovski, Moser & Klein (1997) for deflagration waves. In modelling
the evolution of RMI, the scheme ensures that the location and dynamics of the
interface are tracked explicitly by the level set equation, while the shocks and
expansion fans are treated by a standard capturing scheme. The main advantage
of this approach is that the simplicity and robustness of the standard capturing
schemes are retained, whereas the interfacial processes are described with an accuracy
comparable to standard tracking schemes. The hybrid capturing/tracking scheme has
no unphysical numerical fluxes across the interface. The interface remains a density
discontinuity for all times, even for very large values of the Atwood number.

To solve the level set equations (3.8) and (3.9), we use a standard fifth-order WENO
scheme for Hamilton–Jacobi equations (Jiang & Peng 2000), and employ a PDE-based
iterative scheme for equation (3.9) (Sussman, Smereka & Osher 1994; Peng et al.
1999). The following two subsections summarize briefly the hybrid capturing/tracking
scheme (Smiljanovski et al. 1997; Schmidt & Klein 2003) and its modification for
RMI simulation.

3.1.1. In-cell reconstruction

In finite volume schemes, the cell value of a conserved quantity U i,j is defined as
the volume average of the quantity,

U i,j =
1

V i,j

∫
V i,j

U(x ′)dx ′ , (3.10)

averaged over the cell volume V i,j . Assuming within each cell a piecewise constant
distributions of U for the light and heavy fluid, we reduce expression (3.10) to

U i,j = αU i,j
h + (1 − α)U i,j

l , (3.11)

where α is the fraction of the cell volume of the heavy fluid,

α =
1

V i,j

∫
V i,j

H (G(x ′) − G0)dx ′ , (3.12)

and H is the Heaviside function.
For the in-cell reconstruction scheme, the key idea is to use only U i,j

h and U i,j
l

instead of U i,j to compute the face fluxes in cells, which contain a part of the
interface. We reconstruct U i,j

h and U i,j
l from U i,j using a combination of the jump

conditions of U across the interface,

vh|G=G0
= vl |G=G0

, ph|G=G0
= pl |G=G0

, Th|G=G0
= Tl |G=G0

(3.13a, b, c)

with equations (3.11) and (3.12).
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3.1.2. Cell update

An operator splitting technique (Strang 1967) is employed to advance the numerical
solution in time. In order to obtain the correct update, all gradients in the individual
operator steps must be calculated using only cell values of the same fluid type.

For the diffusion operator, the gradients are computed using a second-order central
difference scheme. The corresponding stencils across the interface therefore involve
the reconstructed cell values Uh and U l , plus one additional adjacent cell value on
the opposite side of the interface. This cell first has to be transformed into the
corresponding matching state using the jump conditions at the interface, before the
gradients are evaluated. In this operation, our method resembles the ghost fluid
approach (Fedkiw et al. 1999).

In the convection operator, we solve the cell face Riemann problems using a
second-order wave distribution algorithm (LeVeque 1990), and formally recast the
individual wave contributions in the form of cell face fluxes Fi−1/2,j and Fi+1/2,j .
However, special care must be taken if a cell (i, j ) contains part of the interface at
tn or tn+1, as shown in figure 3. To ensure the correct computation of the flux, the
individual cell face fluxes for both the heavy, Fi−1/2,j

h , and the light fluid, Fi−1/2,j
l ,

are calculated using only (reconstructed) quantities of the relevant fluid. Then, the
average cell face flux Fi−1/2,j is

Fi−1/2,j = βi−1/2,j Fi−1/2,j
h + (1 − βi−1/2,j )Fi−1/2,j

l , (3.14)

with β being the heavy fluid cell face fraction: see figure 3. Note that, because
our convection operator is based on a wave distribution scheme, Fi−1/2,j takes into
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account only those wave contributions that arise from the cell face Riemann problem.
Since the interface itself constitutes a separate wave, its contribution to the change of
U i,j must be accounted for additionally as

�U i,j = �αC
(
U i,j

h − U i,j
l

)
+ �αL

(
U i−1,j

h − U i−1,j
l

)
+ �αR

(
U i+1,j

h − U i+1,j
l

)
.

(3.15)

Here, �αC is the change of the heavy fluid cell volume fraction due to the motion of
the interface within the cell (i, j ) itself, and �αL and �αR are the contributions due
to movement from adjacent cells to the left, respectively right: see figure 3. Note that
(3.15) implies that the global conservation property of the numerical scheme is now
dependent on the accuracy of �α, and therefore relies on the accuracy of the level
set method.

Finally, a combination of (3.14) and (3.15) yields the update for U i,j in cells with
part of the interface:

Un+1,i,j = Un,i,j +
�t

�x

{(
βi−1/2,j Fi−1/2,j

h + (1 − βi−1/2,j )Fi−1/2,j
l

)
−

(
βi+1/2,j Fi+1/2,j

h + (1 − βi+1/2,j )Fi+1/2,j
l

)
+ �αC

(
U i,j

h − U i,j
l

)
+ �αL

(
U i−1,j

h − U i−1,j
l

)
+ �αR

(
U i+1,j

h − U i+1,j
l

)}
. (3.16)

One of the major advantages of equation (3.16) is that the Courant–Friedrichs–Lewvy
(CFL) condition can be based on the grid size �x of the underlying grid, as the cell
updates are performed on the basis of cell-volume-averaged quantities only.

4. Results
In this section we outline the computational setup, verify and validate our numerical

method, discuss the diagnostics of the interface dynamics, and compare the simulation
results with the theory and the models.

4.1. Computational setup

We study numerically the evolution of RMI for a weak initial shock
with Mach number Ma = 1.2, which propagates from the light to heavy
fluid, and for four different Atwood numbers A = 0.55, A = 0.663, A = 0.78,
and A = 0.9. The computational domain is [−40.667λ, 1.333λ] × [−0.5λ, 0.5λ]
and it is resolved by 5376 × 128 equidistant Cartesian grid cells. In the
z direction, outflow boundary conditions are employed at the external boundaries
of the computational domain. In the x direction, we use symmetry conditions and
calculate only one half of the wavelength. Initially, the interface is located at z = 0
and it is slightly perturbed with a cosinusoidal disturbance z∗(x, t = 0) = a0cos(kx),
where the perturbation wavelength is λ= 2π/k = 3.75 cm and the initial pre-shock
amplitude is a0 = a(t = 0) = 0.064λ (Benjamin, Besnard & Haas 1993).

If the interface were ideally planar, it would move with a characteristic post-shock
velocity v∞. The velocity v∞ depends on the Atwood number, the shock strength,
and the speed of sound c. The value of v∞ can be obtained from one-dimensional
calculations (Meshkov 1969). With the Mach number and the speed of sound fixed, the
value of v∞ is smaller for higher Atwood number A. In our simulations v∞ = 0.219cl

for A = 0.55, v∞ = 0.195cl for A = 0.663, v∞ = 0.163cl for A = 0.78, and v∞ = 0.117cl

for A = 0.9, and cl = 347.2 m s−1.
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Figure 4. Growth rate ȧ in the linear regime of RMI, for A = 0.9 and Ma = 1.2. The solid
line is the numerical simulation, the dashed line is the solution given by the linear theory of
Wouchuk (2001a).

In all simulations the time step is given by a constant CFL number of 0.8.
Note that the simulations are performed for the viscous Navier–Stokes equations,
and the dynamic viscosity μ is the same in the heavy and light fluids, with
Re = ρlv∞λ/μref = 13042 (A = 0.55), Re = 11572 (A = 0.663), Re = 9700 (A = 0.78),
and Re = 6968 (A = 0.9). The influence of viscosity is small, and this allows one
to compare the simulations with the inviscid theories. To verify the statement, we
performed a series of test runs based solely on the Euler equations, and found that
the influence of viscosity is indeed insignificant. The negligible effect of viscosity can
be related to the choice of the symmetry boundary conditions in the x direction. Under
these conditions, boundary layers, which may influence the instability evolution, do
not appear on the boundaries of the computational domain.

4.2. Verification and validation of the numerical method

To verify and validate the applicability of our numerical method for modelling RMI
dynamics, we perform two test runs, and compare the growth of the instability
in the simulations with that given by the compressible linear theory and by the
experiment. In the simulations, the positions of the bubble and spike and therefore
the perturbation amplitude a are calculated from the bilinear interpolation of the
level set scalar G along x = 0 and x = λ/2. Then, the amplitude growth rate ȧ is
determined from the velocity field v, conditioned on the location of the bubble and
the spike tips, ȧ = ((v · n)|s − (v · n)|b)/2, where n = ∇G/|∇G| is the normal vector of
the fluid interface.

In the former verification test, we compare our numerical results with the linear
theory of Wouchuk (2001a). This theory captures the baroclinic production of vorticity
caused by the shock-interface interaction and, in contrast to linear impulsive models
(Richtmyer 1960; Meyer & Blewett 1972; Vandenboomgaerde et al. 1998), provides
an adequate value of the RMI growth rate for fluids with highly contrasting densities.
Figure 4 compares the growth rate of the amplitude ȧ obtained in the simulations with
that derived by Wouchuk (2001a) for A = 0.9. For early times, when the nonlinear
effects are negligible, the agreement between the linear theory of Wouchuk (2001a)
and the simulation is excellent. The growth rate of the linear RMI in this case
is v0 ≈ 0.055v∞ = 2.23 m s−1. Figure 4 shows that the growth rate of the amplitude
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Figure 5. Amplitude versus time for A = 0.663 and Ma = 1.1. The solid line is the numerical
simulation, the symbols are experimental results taken from Jones & Jacobs (1997).

exhibits oscillations caused by the reverberations of sound waves. Predicted first by
the linear theory of Wouchuk (2001a), these oscillations are accurately reproduced
in our simulations. As is seen from figure 4, the amplitude of the oscillations is
about 10–20% of the initial growth rate, whose value is on the order of 5 % of the
velocity v∞, which is, in turn, about 10 % of the speed of sound cl . The amplitude
of the oscillations is therefore very small compared to the speed of sound, and
the oscillations do not induce significant pressure fluctuations. However, due to the
oscillations, the peak of ȧ is about 10 % higher than the growth rate of the RMI in
the linear regime.

In the latter validation case, we compare our simulations with the experiments of
Jones & Jacobs (1997). Figure 5 shows the evolution of the perturbation amplitude.
For the experiments and the simulation run presented in figure 5, a shock with
Mach number Ma = 1.1 hits a cosinusoidally perturbed interface with wavelength
λ= 5.9333 cm and initial amplitude a0 = 0.15 cm. The Atwood number in this case is
A = 0.663, and all other initial and boundary conditions are those described in § 4.1.
As is seen from figure 5, the growth of the perturbation amplitude obtained in the
simulations agrees with the experimental data (Jones & Jacobs 1997). We emphasize
that in figure 5 the velocity oscillations are also present and can be derived from our
numerical solution as the time-derivative of the amplitude. However, the experiments
of Jones & Jacobs (1997) do not capture the oscillations, as the data set in figure 5
is a collage of single-shot measurements of a series of different experiments. Overall,
the agreement between the simulations and the linear theory, figure 4, as well as the
experiment, figure 5, is excellent. Our results suggest that for a reliable diagnostics of
the small oscillations and the initial growth rate in the experiments, in addition to
continuous visualization and high temporal and spatial resolutions, the values of the
Mach number and the Atwood number should be controlled with a relative accuracy
of at least 10−3−10−4, which is an extremely challenging task.

4.3. Diagnostics of the nonlinear dynamics

Figure 6 depicts the nonlinear evolution of the Richtmyer–Meshkov instability for
A = 0.55, A = 0.663, A = 0.78, and A = 0.9. Our simulations stop as the reflected shock
hits the interface. In figure 6, the bubbles are located in the centre, the spikes are
on the sides, and the roll-up of vortices forms mushroom-shaped spikes. In the case
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Figure 6. Evolution of the fluid interface for (a) A =0.55, (b) A = 0.663, (c) A = 0.78, and (d)
A = 0.9, every 1 ms starting at t = 0 ms.

of fluids with highly contrasting densities, A = 0.9, the roll-up of vortices is less
pronounced, in agreement with the observations (Youngs 1994; Collins & Jacobs
2002; Robey et al. 2003; Glendinning et al. 2003; Miles et al. 2004; Jacobs & Krivets
2005). The employed grid resolution might be insufficient to grasp all small-scale
structures in the roll-up regions. It is sufficient, however, to describe adequately the
large-scale coherent dynamics and to capture the evolution of the bubble front in the
vicinity of its tip.

To quantify the evolution of the Richtmyer–Meshkov instability, we first define
the length scale and time scale of the flow. The length scale is the period of the
coherent structure λ. To perform a comparative study of various stages of RMI
(linear, weakly and highly nonlinear), most existing observations use the time scale
set by the initial growth rate v0 as λ/v0 (Youngs 1994; Collins & Jacobs 2002; Robey
et al. 2003; Glendinning et al. 2003; Miles et al. 2004; Jacobs & Krivets 2005).
However, as discussed earlier, figures 4 and 5, the experiments do not capture the
interface dynamics in detail. The reverberations of sound waves, appearing in the
linear regime of RMI, can add uncontrolled contributions to the measured value of v0

and can therefore make the value of the time scale inaccurate. To avoid this difficulty,
we choose the time scale set by the velocity v∞ at which an ideally planar interface
would move after the shock passage. The velocity v∞ can be obtained directly from
one-dimensional calculations (Meshkov 1969). The choice of the time scale as λ/v∞
allows one to make the diagnostics repeatable and more reliable.

To study the nonlinear dynamics of RMI, we use two diagnostic parameters,
the bubble velocity and the bubble curvature. The bubble velocity is a traditional
diagnostic parameter. In many existing observations of RMI, the velocity of the
bubble front is determined relative to a ‘middle line’: half the distance between the
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tips of the bubble and spike, i.e. one half of the amplitude a/2. This kind of data
analysis may result in significant inaccuracies, especially in the nonlinear regime of
RMI, when the bubbles and spikes are not symmetric. To determine the bubble
velocity more accurately, we account for the fact that RMI develops relative to a
background motion with the constant velocity v∞. Therefore, the z-coordinate of the
reference point is v∞t , and in the laboratory frame of reference the bubble velocity
is (v + v∞), whereas in the frame of references moving with velocity v∞, the bubble
velocity is v.

The curvature of the bubble front can be calculated via two distinct approaches.
In the first approach, one can compute the curvature from the level set scalar as
κ = 2ζ = ∇ · n = ∇ · (∇G/|∇G|). This computation limits the evaluation of the curvature
value to the symmetry point, i.e. the very tip of the bubble, and is thus extremely
sensitive to small-scale fluctuations. To obtain the large-scale dynamics of the bubble
front from the simulation data, we apply another approach (Oparin & Abarzhi 1999).
First, from the level set scalar field, we calculate via bilinear interpolation the positions
of the interface z∗

i at different locations |xi | � xζ for some given xζ , spaced a constant
grid size �x apart. Then we compute the curvature ζ using a least-squares fit of
a circle with radius R = 1/2ζ to the discrete locations (xi, z

∗
i ) of the interface. This

approach effectively ‘removes’ the small-scale fluctuations of the bubble curvature and
retains only its large-scale behaviour, captured by the nonlinear theory. If the shape of
the interface is not ideally circular, the numerical value of the bubble curvature can be
a function of xζ . This is illustrated by figure 7, which depicts the temporal evolution
of the bubble curvature for different values of xζ . For A = 0.55, the shape of the
bubble front is very close to that of an ever-expanding circle. As the Atwood number
increases, the inner region of the nonlinear bubble becomes nearly flat, followed by a
sharp transition into the spike region: see figure 6. With an increase in xζ the value
of ζ slightly increases. We emphasize, however, that to estimate the performance of
our nonlinear theory and the single-scale drag models (Goncharov 2002; Oron et al.
2001; Alon et al. 1995), for a given moment of time, the exact numerical value of ζ

is not necessary to obtain. Only the asymptotic value and the trend of ζ (t) for t → ∞
is important, as the difference between the values of ζA = 0 and ζD = − π/3 is large
enough to differentiate.

4.4. Comparison of numerical results to the nonlinear theory and models

Figure 8 shows the evolution of the bubble velocity v(t) in the frame of reference
moving with velocity v∞ for all four Atwood number cases. As is seen from figure 8,
the bubble is accelerated ‘impulsively’ by a passing shock, and in the linear regime
its velocity reaches a maximum value. As the coherent structure appears, the bubble
decelerates. The bubble velocity decreases linearly with time in the weakly nonlinear
regime, and approaches zero asymptotically, in agreement with the foregoing analysis.
The velocity evolution is accompanied by oscillations, caused by the reverberations
of the sound waves. The oscillations occur in the linear regime of the instability
(figure 4), and are damped with time only slightly as the fluids are nearly inviscid
(figure 8).

Several PADE and heuristic models described the evolution of the bubble front for
‘all times’, from the linear to the highly nonlinear regime of RMI (Zhang & Sohn
1997; Oron et al. 2001). The predictive capability of these (well-calibrated) models
should be extensively tested, as the models heavily use adjustable parameters to
compare with the experimental data, and are therefore biased (Hastie, Tibshirani &
Friedman 2001). The nonlinear evolution of RMI is accompanied by finite-time
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Figure 7. Bubble curvature ζ (t) evaluated for xζ = 4/64λ (solid line), xζ = 6/64λ (dotted
line), xζ = 8/64λ (dashed line), and xζ = 10/64λ (dash-dotted line).

singularities, which occur at small scales and are sensitive to the density ratio and
the initial conditions and whose dynamics is a fundamental and unresolved problem,
such that to date none of the existing theories provide a rigorous description of the
evolution of the entire interface in RMI for ‘all times’ (for details see Velikovich
1996; Wouchuk 2001a; Abarzhi 2002; Matsuoka et al. 2003; Abarzhi et al. 2003; and
references therein). Our theoretical analysis considers only the large-scale coherent
dynamics and reports the regular asymptotic solutions describing the dynamics of the
bubble front in the vicinity of its tip. We derive the asymptotic nonlinear solutions to
leading order in time, account for the higher-order correlations in space, and find the
next-order corrections in the time series expansion.

The properties of our non-local solution differ substantially from those of the single-
mode models (Oron et al. 2001; Goncharov 2002). According to our results, for RM
flow without mass sources, the dynamics of the nonlinear bubble is described by the
infinite power law time series, and the higher-order spatial correlations significantly
affect the values of the diagnostic parameters. The nonlinear RM bubble decelerates
and flattens, and to leading order in time vA = FA/kt , where FA = C/A, and ζA = 0.
The shape of the bubble front is not determined solely by the spatial period of
the coherent structure λ and is therefore influenced by the longitudinal scale h.
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Figure 8. Bubble velocity as a function of time.

The single-scale models (Oron et al. 2001; Goncharov 2002) suggest that the bubble
velocity is a rational function of time, and to leading order in time the velocity of
the nonlinear bubble decays as vD = FD/kt , where FD = (1 + A/3)/(1 + A), whereas
its curvature is finite and density-ratio-independent and is set uniquely by the period
λ as ζD = − π/3λ. The single-scale solution can be derived from the conservation
laws only if the flow has an inhomogeneous time-dependent mass source (Goncharov
2002). For a given value of the Atwood number, the fast flattened bubble with (vA, ζA)
decelerates more strongly and experiences more drag compared to the slow curved
bubble with (vD, ζD).

At first glance, as the ratio vA/vD is large, one could distinguish between
the solutions via a comparison with the bubble velocity in observations. In the
experiments, however, one commonly measures the bubble position h (Aleshin
et al. 1988, 1990; Collins & Jacobs 2002; Glendinning et al. 2003; Robey et al.
2003; Jacobs & Krivets 2005). For vA and vD , the bubble displacement is
h ∼ (FA(D)/k) log(t/τ ). The logarithmic corrections to power laws (as in the nonlinear
RMI) are comparable with the experimental errors and are ill-defined (see, for
instance, Gol’din et al. 1973). Using Taylor series expansions, one can readily ascertain
that log-dependence can be approximated by power law dependence with small,
slightly varying exponents. A log correction to a power law can be confused with
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small corrections for the exponent of the power law itself (Gol’din et al. 1973). The
coefficient FA(D) of the logarithmic dependence is therefore extremely sensitive to
the manner of data truncation and is impossible to evaluate accurately for a finite
sequence of data points and a short dynamic range in the observation time.

In our simulations, the bubble velocity v can be measured directly, and with the
scaling v∞, the numerical results can be analysed more accurately compared to other
observations. Still, based solely on the velocity data (figures 1 and 8), we cannot
distinguish between the results of our non-local theory (2.11) and the single-mode
models (Oron et al. 2001; Goncharov 2002). As the asymptotic velocity of the bubble
front is represented by a power law time series, a large dynamic range is required
for accurate quantification of the exponent and the pre-factor of the leading-order
term in the series (Gol’din et al. 1973). For a finite sequence of data points and a
short dynamic range, an excellent fit between the two solutions can be easily obtained
(as in figure 1). Yet, unless several (at least two or three) decades of scales in the
observation time are considered, the exponent and pre-factor of the power law cannot
be estimated accurately. In fluid dynamics, intense quantitative studies of power law
dependences have been performed, for instance in homogeneous isotropic turbulence
(Sreenivasan 1999) and turbulent convection (Grossmann & Lohse 2000). In isotropic
homogeneous turbulence, two to three decades of scales are the accepted level of
standards for the estimate of power law exponents in turbulent energy spectra (see
Sreenivasan 1999 and references therein). In turbulent convection, to evaluate the
scaling exponent of the Nusselt number with the Rayleigh number, as many as nine
decades of the Rayleigh number have been considered (Grossmann & Lohse 2000).

Another complexity in the quantification of the nonlinear dynamics in the
Richtmyer–Meshkov instability originates from flow compressibility. As is seen from
figure 8, in the nonlinear regime of compressible RMI, the evolution of the bubble
velocity is accompanied by oscillations. These oscillations appear in the linear regime
of the instability and are induced by the reverberations of the sound waves, (figure 4).
In the nonlinear regime, the bubble velocity decreases, whereas the amplitude of the
oscillations is damped only slightly. Figure 9 presents the log-log plot of the bubble
velocity versus time in the nonlinear regime of RMI for the case A = 0.55. This density
ratio is close to that in the experiments of Jacobs & Krivets (2005), whereas the time
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considered is significantly longer. Figure 9 illustrates that the quantification of the
time-dependence of the bubble velocity from the simulation data is a real challenge.

Figure 10 shows the fit of the bubble velocity in the simulations by our nonlinear
solution with v = 3/2Akt + v0B1(tv0k)−b1 + c.c. which describes the bubble front
dynamics in first approximation in space, N = 1, and accounts for the first-order
correction in the time series expansion in the case A = 0.55. The value of b1 is given
in table 2 and v0/v∞ = 0.178. The left bound of the time interval in figure 10 is
chosen to ensure the nonlinearity of the dynamics, and it is ∼ 3λ/v0, whereas the
right bound is the time when the simulation stops, and it is significantly longer than
that in the experiments of Jacobs & Krivets (2005). The curve fit is excellent, but the
short dynamic range in t prevents us from making a quantitative evaluation of the
time-dependence of the bubble velocity. On the basis of our observations we can state
only that the nonlinear RM bubble decelerates with time (figure 8) and its velocity
approaches zero asymptotically (figure 9).

We see that the measurement of the bubble curvature has a crucial importance for
clarifying the issue of whether the nonlinear dynamics of RMI is a single-scale or a
multiscale process. If indeed it were a single-scale process, then the spatial period λ
would uniquely define the shape of the bubble front and asymptotically |ζ | ≈ 1/λ, as
suggested by the drag and single-mode models (Oron et al. 2001; Goncharov 2002).
Figure 11 shows the evolution of the bubble curvature ζ (t) for all four Atwood
number cases. As is seen from figure 11, after the shock passage, the bubble front
is becoming curved. The bubble curvature changes linearly with time and reaches an
extreme value in the weakly nonlinear regime. Then its absolute value decreases and
approaches zero. Figure 11 also presents the root-mean-square deviation ζ ′ of the
curvature ζ evaluated at xζ = 4/64λ for all four cases. In each case, the root-mean-
square deviation is small, ensuring that the curvature of the bubble front is calculated
accurately.

The evolution of the bubble curvature from the simulations confirms the results
of the non-local theory (2.11) and disagrees with the solution ζD = − k/6 ≈ −1.05/λ
given by the single-scale models. According to our results, the shape of the bubble
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front in RMI is not determined solely by the spatial period λ. It is therefore sensitive
to the longitudinal scale h. For fluids with high and intermediate contrasting densities,
A = 0.663, A = 0.78, and A = 0.9, the decay in the curvature value is clearly visible
from figure 11, and for smaller Atwood numbers it takes longer for the bubble to
flatten. In the case of A = 0.55 the flattening process is significantly slower than
for the other three cases. For A = 0.55, at a time when the reflected shock hits
the interface and our simulations stop, the absolute value of the bubble curvature
remains finite, |ζ | = 0.516/λ, yet this is already twofold smaller than |ζD| (Oron et al.
2001; Goncharov 2002). We emphasize that the flattening of the bubble front remains
in the Euler simulations, and is observed in the experiments of Collins & Jacobs
(2002), Glendinning et al. (2003), and Jacobs & Krivets (2005). As discussed earlier,
the single-mode solution (vD, ζD) has a time-dependent inhomogeneous mass source.
Therefore, the curvature of the bubble front is the relevant and sensitive diagnostic
parameter, whose value tests whether the normal component of velocity is continuous
at the fluid interface, and whether the flow has no artificial mass sources.

To conclude this section, we review the comparison between the experiments
performed by Jacobs & Krivets (2005), the single-scale model (Oron et al. 2001;
Goncharov 2002), and our theory. Our theory suggests the following diagnostic
parameters: the mass source, the bubble velocity and the curvature of the bubble front.
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The experiments of Jacobs & Krivets (2005) have no mass sources, report deceleration
and flattening of the bubble front, and mention that for fluids with similar densities
the RM bubbles move faster than in the case of fluids with contrasting densities.
Therefore, qualitatively, these experiments confirm our theoretical predictions, not
the conclusions of the single-mode drag model. On the other hand, Jacobs & Krivets
(2005) report a quantitative agreement of the experimental data with the value of the
bubble velocity vD predicted by the single-mode models, which is significantly lower
than the leading-order term in the velocity expansion vA found by our theory. As
discussed earlier, this agreement is not surprising, as in the experiments of Jacobs &
Krivets (2005) the overall observation time is short, � 10/kv0 and is limited to
approximately one decade in scales, the value of the initial growth rate is not a
direct measurement, and the experimental data points are a collage of single-shot
measurements of a series of different experiments. De facto, the experiments of
Jacobs & Krivets (2005) may apply the results of the single-mode models to calibrate
the experimental value of the initial growth rate (which varies from one data point to
another), rather than to estimate the exponent (not to say pre-factor) of the leading-
order term in the asymptotic velocity expansion. The data calibration is a very
important and necessary step in the evaluation of quality of experimental data sets,
but it may be insufficient for an adequate quantitative description of the nonlinear
dynamics of such a complex phenomenon as the Richtmyer–Meshkov instability.

5. Discussion and conclusion
We performed a systematic study of the nonlinear evolution of the Richtmyer–

Meshkov instability. The flow is two-dimensional, the shock is weak and passes from
the light to the heavy fluid, the amplitude of the initial perturbation is small, and
the fluids have highly contrasting densities as well as an intermediate density ratio.
The large-scale coherent dynamics is considered, and the evolution of the bubble
front is diagnosed. RMI develops relative to a background motion with a constant
velocity v∞, at which the interface would move if it were ideally planar. The obtained
analytical and numerical results are summarized in the phase diagram in figure 12,
representing the bubble velocity v(t) versus bubble curvature ζ (t), with time t being a
parameter. Initially the bubble exhibits an abrupt acceleration caused by the shock-
interface interaction (Richtmyer 1960; Meshkov 1969). Then the bubble starts to
decelerate, while the absolute value of the bubble curvature increases and reaches
an extreme value. We emphasize that the bubble velocity and curvature reach their
extreme values at two distinct moments of time. As the instability evolves, the bubble
continues to decelerate and its curvature approaches zero, as found by the non-local
theory. Our numerical and analytical results agree with one another and show that
for fluids with similar densities the bubbles move faster and flatten more slowly
than those for fluids with highly contrasting densities. Our analysis indicates that
the exponent of the power law decay of the velocity of the nonlinear RM bubble
may depend on the Atwood number (Abarzhi 2001; Abarzhi et al. 2003). It is worth
mentioning that in figure 12 the magnitude of |v|/v∞ is larger for higher Atwood
numbers because the value of v∞ is smaller for higher Atwood numbers (compare, for
instance, figure 6). In our simulations, the incident shock propagates from the light
to heavy fluid; however, the flattening of the bubble front may also be observed in
the ‘heavy-to-light’ configuration. We shall address a detailed numerical study of this
case in the future.
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In many of the existing observations, the nonlinear dynamics is quantified as
follows (Youngs 1994; Collins & Jacobs 2002; Glendinning et al. 2003; Jacobs &
Krivets 2005). The characteristic time scale is set by the value of the initial growth
rate v0, which is hard to measure accurately. The only diagnostic parameter is the
bubble (spike) position, calculated with respect to the ‘middle line’ , one half of the
amplitude. The data sampling does not have high temporal resolution, the dynamic
range of the overall observation time is short (approximately one decade), the Mach
and Atwood numbers are controlled coarsely, and the velocity oscillations caused by
sound waves are either not captured (experiments) or disregarded (simulations). As
discussed earlier, this type of analysis of the observation data may contain significant
inaccuracies. To quantify our simulations of the nonlinear RMI, we apply another
diagnostics. We set the time scale using the velocity v∞, at which the interface
would move if it were ideally planar. The bubble velocity and curvature are both
monitored. The bubble (spike) position is calculated in the frame of reference moving
with velocity v∞. The data sampling has a high-frequency temporal component, and
the oscillations of the velocity, caused by the reverberations of sound waves, are
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captured. The time interval considered in our simulations is significantly longer than
in other observations. However, in the nonlinear regime of RMI, we can evaluate
only asymptotic values of the diagnostic parameters, as the accurate quantitative
estimate of their time-dependences is prevented due to the velocity oscillations and
the relatively short dynamic range of the simulation time.

Our simulations confirm the qualitative effect predicted and explained by our
non-local theory: flattening of the bubble front in the nonlinear regime of RMI.
Our results do not confirm predictions of the single-scale models (Alon et al. 1995;
Oron et al. 2001; Goncharov 2002). We show that these models explicitly violate the
conservation laws. The heavy use of adjustable parameters, low temporal resolution
and short dynamic range can explain the (apparent) agreement between the models
and the observations. There is nothing wrong in a ‘curve fit’ of experimental data
with adjustable parameters, but the range of applicability of such an approach and its
predictive capability should not be overestimated (Gol’din et al. 1973). The excellent
“curve fit” implies only that the drag models can be calibrated, and the observations
of Youngs (1994), Collins & Jacobs (2002), Glendinning et al. (2003) and Jacobs &
Krivets (2005) are consistent with one another. It does not, however, mean that the
model captures correctly the essentials of the nonlinear dynamics. The large number of
adjustable parameters induces bias (Hastie et al. 2001), which may, in fact, obscure the
underlying physics of the phenomena, and may also lead to a false sense of agreement
between the model and the experiments rather than providing grounds and directions
for improvement in the information capacity and fidelity of the experimental data
sets. According to our theoretical and numerical results, to build the solid grounds for
understanding the turbulent mixing induced by the Richtmyer–Meshkov instability,
existing experiments and simulations have to be augmented with highly resolved
measurements of the velocity and density fields, lasting over a much longer dynamic
range in the observation time, with a tight control over the experimental parameters,
such as the Mach and Atwood numbers. These are tremendous experimental and
numerical tasks, and they have not been solved so far.

Our results show that the flattening of the bubble front is a distinct property of the
nonlinear evolution of the Richtmyer–Meshkov instability (compared, for instance, to
RTI, as discussed by Abarzhi 2001 and Abarzhi et al. 2003). The flattening is not just
an indication that, in the observations, the normal component of velocity is continuous
at the fluid interface and the flow has no artificial mass sources. It shows that the
nonlinear dynamics in RMI is a multiscale process, governed by two macroscopic
length scales: the spatial period of the structure λ and the longitudinal scale h, which
is the bubble (spike) displacement, i.e. the wavelength and the amplitude of the front.
As illustrated by figure 12, in the nonlinear RMI the velocity of the bubble front
v = (dh/dt) and its curvature ζ mutually depend on one another: dh/dt = v∞f (|ζλ|),
where f is an algebraic function, and the processes of deceleration, d2h/dt2, and
flattening, d(ζλ)/dt , are inter-related. Hence, to obtain a reliable description of the
mixing process, it is essential to take account of the multiscale character of RMI
dynamics.

To summarize, we have considered theoretically and numerically the large-
scale coherent dynamics in the Richtmyer–Meshkov flow for fluids with high and
intermediate density contrasts and for a small-amplitude initial perturbation in two
dimensions. Our theory derives the asymptotic solutions to leading order in time,
identifies the exponents of the next-order terms in the timeseries expansion, and
accounts for the higher-order correlations in space. The theoretical solution has no
adjustable parameters, indicates that the flattening of the bubble front is a distinct
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property of RMI, and explains the nature of the phenomenon. Our simulations
model the interface dynamics for compressible, immiscible, and nearly inviscid fluids.
The numerical method treats the interface as a discontinuity and is applicable for
fluids with very high values of the density ratio. Our simulations have high temporal
resolution, run for a time significantly longer than in other observations, and monitor
both the velocity and curvature of the bubble front. The theory and the simulations
agree with one another. According to the results obtained, the evolution of RMI
is a non-local and multiscale process, and the nonlinear RM bubbles flatten and
decelerate. Our consideration indicates that the accuracy, resolution, and the dynamic
range of the time of observation in the existing experiments may be insufficient
for a rigorous quantification of the time-dependence of the nonlinear RMI. Further
improvement of the interface diagnostics is required. The RMI phenomenon still
remains a formidable task, open for a curious mind.
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